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Abstract— A hybrid passive control strategy is developed 
for  a class of hybrid systems modeled by Mixed Logical 
Dynamical (MLD) approach. It allows to model different 
operating modes of the system and constraints. We proposed 
using the MPC for control system .The passive controller is 
used to take in account the actuator failure and the 
optimization problem is transformed into a mixed-integer 
quadratic programming problem (MIQP). The considering 
fault-tolerance capabilities are developed and discussed. The 
proposed method is illustrated by a motorboat system. 

 
 Index Terms—Hybrid System, MLD, MPC controller,   

Passive  Tolerant Control, MIQP. 

I. INTRODUCTION 

Every engineering system can malfunction because faults 
in its component ,in modern technological systems, there is a 
high demand on performance, safety, and reliability of 
systems. It is desired that if a fault happens, the control 
system can automatically detect the fault and moderate its 
effect on the system such that it can continue working while 
providing an acceptable performance. If an acceptable 
performance is not possible, it should be able to preserve the 
overall functionality and stability of the systems while 
allowing some degradation in the performance of the system. 
In any case, it is important to avoid dangerous areas to 
prevent damages to the system. Therefore, Fault Tolerant 
Control (FTC) is very important for modern technological 
systems. The area of FTC has attracted a considerable 
attention in recent years. It is a relatively new idea recently 
introduced in the research literature, which allows having a 
control loop that fulfills its objectives when faults in system 
components (instrumentation, actuators and/or plant) appear. 
In fact, the fault tolerant systems in literature can be derived 
into two main groups: active and passive techniques. On the 
one hand, the passive technique is designed, such that it is 
robust, within performance range, to fault occurrences. On 
the other hand, the active fault tolerant system aims at 
changing the control operation when the fault is detected. 
These changes can comprise reconfiguration of the  
 
 
 
 
 

 
 
 
controller scheme, modification of controller parameters or 
alternative set point trajectories. 
In recent decades there exists an emerging area of research 
working in fault tolerant control of hybrid systems, for a 
survey one can look at [1] [2], [3].                 
A class of approaches for diagnosis of hybrid systems 
discrete/temporal abstraction of the continuous dynamics is 
presented in [4]. In [5], the diagnoser uses a discrete event 
abstraction of the system and the continuous dynamics 
information is taken in consideration when it becomes 
necessary. In [6], the authors use a Petri net abstraction for 
dealing with continuous behaviors of hybrid systems. In [3] 
a model based diagnosis method on a hybrid bond graph 
modelling framework is proposed. Particle filtering methods 
are another class of methods for diagnosis of hybrid systems 
[7], [8]. 
Motivated by different capabilities and applications of the 
mixed logical dynamical (MLD) modeling of hybrid system, 
many approaches have been reported in [9], [10], [11]. 

In this paper Mixed Logical Dynamical (MLD) 
framework is used for modeling of hybrid system.  

 This formalism covers important classes of hybrid 
system. In addition, by using the MLD framework, the  
optimization problem used for FTC will be transformed to a 
mixed integer linear or quadratic problem for which there 
are many efficient solvers.  
The main propose consists in embedding the passive fault- 
tolerant design of controllers based on model predictive 
control (MPC) within the hybrid system framework. In this 
context a new methodology is developed. The goal is to 
verify the fault tolerant MPC control and computational 
aspects of MLD framework to deal with hybrid systems 
modeling and control problem. 
The paper is organized as follows: in section 2, we presented   
the MLD formalism. The passive fault tolerant system based 
on MPC is developed and the optimization problem is 
transformed into a mixed-integer quadratic programming 
problem (MIQP) in section 3. An illustrative example of 
motorboat system and simulation results are presented and 
discussed in section 4. 
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II.  MIXED  LOGICAL DYNAMICAL  SYSTEMS 

 
Mixed logical dynamical formalism is a powerful 

modeling approach in hybrid systems theory. It transforms 
dynamics, logic and constraints of a complex system into an 
integrated model. Logical and dynamical constraints are 
translated to mixed-integer inequalities (see[11] for more 
details). Mixed logical dynamical modelling allows the state 
and control inputs to be continuous or discrete. A basic 
principle of MLD modelling is the interaction between 
logical and dynamical variables. 

 It can be proved that [ ] ( )1 [ 0]f xδ = ↔ ≤ is true if  

 
 

                                                                                    (1) 
           

          
Where M (m) is maximum (minimum) or an upper 

(lower) bound off  andε  is a small positive number. This 

equivalence permits the assignment of binary variables to 
dynamical constraints which may define the different 
operation modes of hybrid system. Another useful 
equivalence that deals with the interaction of logical and 
dynamical variables is as follows: The equality 
relation ( )z f xδ= regardless of the relation between δ and 

( )f x could be translated to the following four mixed integer 

inequalities: 
 

 
( ) (1 )
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δ
δ

δ
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                                            (2)      

         
The MLD modeling framework is based on the idea of 

translating logic relations, discrete/logic dynamics, A/D 
(analog to digital (logic)), D/A conversion and logic 
constraints into mixed integer linear inequalities. These 
inequalities are combined with the continuous dynamical 
part, which are described by linear difference equations. The 
resulting MLD system is described by the following 
relations: 

         

( ) ( )
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Where: 

1 2 3 1 2 3 1 2 3 4, , , , , , , , , , ,A B B B C D D D E E E E and 5E are 

matrices of appropriate dimension.and the continuous and 
binary (mixed) variables x, y and u are respectively the state, 
inputs and outputs of MLD system which are defined as 
follows: 
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{ }0,1 lrδ ∈ are the auxiliary binary variables    and 

crz ∈ℜ are the auxiliary continuous variables.  
    
 
 The variables  δ andz  are introduced when translating 

logic propositions into linear inequalities.  There are used to 
define the relations between continuous and discrete parts 

 
 
 
 
 
 
 
 
 
                                       
 
 
                         Fig 1. MLD structure  
 

III.  PASSIVE  PREDICTIVE CONTROL BASED ON MLD  

FAULT  MODEL 

 
A.  Predictive control of MLD formalism 
 

In [11], Bemporad and Morari are introduced a model 
predictive control (MPC) of hybrid MLD system description 
and a mixed integer linear program solver. 

The main idea of MPC based model is to predict the 
future evolution of the system in a fixed prediction horizon 
with the measurements of the system.  

Consider the MLD system (3) and an equilibrium state, 
input and output variable( , , )eq eq eqx u y and let ( , )eq eqzδ  be 

the corresponding pair of auxiliary variables. 
 
for a MLD system of the form Eqs.(3), consider the 

following problem: 
 
Problem 1. Given an initial state 0x  and a Horizon 

prediction N, find (if it exists) the control sequence  
 

{ }* * *(0| ),..., ( 1| )ku u k u k N k+ −≜ ), 

 which transfers the state from 0x to eqx  and  minimizes the 

 δ
 

lx

 

A/D 

 

Discrete / Logic dynamics 

Continous dynamics 
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z
 

( )z f xδ=
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   cost function, for the MLD model, the optimization has 
the following form:  

 
 
 
                                                                                     (4) 
 
 
 
 
Where ,u xQ Q are positive definite matrices and 

, ,y zQ Q Qδ are nonnegative definite matrices. Furthermore, 

the MLD system equations have the end-point condition 
(stability constraint): 

 
                           ( | ) eqx k N k x+ =                                (5)  

The optimal MPC minimizes the objective function J(k) 
subject to constraints (3) and (5) .This is able to stabilize the 
MLD on desired reference trajectories 
Problem 1 can be solved as a mixed-integer quadratic 
programming (MIQP) problem. By using the Eq. (3), for 
time-invariant systems we have the solution formula: 
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by plugging Eq.(3) and Eqs. (6)  
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 We can define the vectors: 
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we can obtain the following equivalent formulation 
 
 

1
min

2
T T

V
V HV f V+

                          (7) 

inq inqA V B≤
  

where matrix ,    inq inqH A et B    are suitable defined the 

the vector  

U

V

Z

 
 = ∆ 
  

 contains both real-valued and integer-

valued components.    
used during optimal procedure. Consequently, we can get the 
optimal control sequence by solving the MIQP problem [11]. 
   
B. Mixed logical dynamical fault proposed  
 
In this paper, we proposed to use the MLD formalism to 
model actuator failure. The key idea is to introduce the 
auxiliary variables ,  f fz δ  to represent the fault on the 

system as follow: 
                                                                        

                 { }0,1

 

f

f f fc f

fc

u u z

z u

u u

δ δ
α

== −

= ⋅ ∈

=

                         (8) 

 
 With α   : Coefficients of failure. 

 If the fault is detected, the passive fault tolerant control 
technique consists to reconfigure the model predictive 
controller for the faulty system by changing the constraints 
to reflect the identified fault. Therefore, the MPC problem 
should be modified accordingly by replacing the MLD by 
MLD fauts.   

 
We can define the MLD fault as follow: 

~ ~

1 2 3

~ ~

1 2 3

~ ~ ~ ~ ~ ~ ~

2 3 1 4 5

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x k Ax k B u k B k B z k

y k Cx k D u k D k D z k

E k E z k E u k E x k E

δ

δ

δ ɶ

+ = + + +

= + + +

+ ≤ + +                (9) 
 

      With

~

f

δ
δ δ

 
=  
   , 

~
  

f

z
z

z

 
=  
   

, 1,...,5i iEɶ
=

are the extended matrices involved the faulty 

mode  
In faulty mode, the criteria ( )J k  is modified and we note in 
this case another optimization problem MIQP under 
constraints (7). The optimization problem is similar to a 
minimum time optimal control problem. 

Given a normal model and faulty models of the system 
subject to the faults another equilibrium state must be found 
for the faulty system. In fact, if the fault is detected, the 
passive fault tolerant control technique consists to 
reconfigure the model predictive controller for the faulty 
system by changing the constraints to reflect the identified 
fault. We carry on solving the MPC optimization (4), with 
the corresponding faults information (7).  
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IV.   ILLUSTRATIVE  SYSTEM 

 

 

 
                           Fig.  2. Motorboat scheme. 
 
     In this section, the proposed method is tested using 

motorboat figure 2, presented in [12]. The model is a 
simplified version of the submarine model developed in [13]. 
We adopted MLD formalism for modeling and MPC 
controller for reconfiguration strategy   

The model of the motorboat is nonlinear and is presented 
as:  
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ɺ

ɺ
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                        (10)       

 
 
 
where v  is the sailing speed, ϑ is the yaw angle, x and y 

represent the position of the motorboat, mu  is the force 

produced by the motor and ku  is the rudder position.  

The system can be separated into two parts, the first 
representing the dynamics and the second representing 

The position of the motorboat.  In this work interested by 
the first part. Considering the fixed input  

      
              k1 k2 k310,   0, 10 u u u= − = = −         

The control system can drive the motorboat using discrete 
inputs. { }0,1mu ∈  and { }10,0,10ku ∈ − .   

if mu = 0, ku can be -10 or 0 or 10 of same  if mu = 1, 

ku can be -10 or 0 or 10 
 

TABLE 1 Different possibility of discrete inputs 
 

Inputs 1 2 3 4 5 6 

um 0 0 0 1 1 1 

uk -10 0 10 -10 0 10 

 

 
From Table 1 and using the discretization Eulier (Ts =    

0.2s), the system can evolve in several modes of operation. 
Indeed, each mode depends on the discrete inputs which are 
represented by the following equations: 
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Can be presented as following: 
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For modeling motorboat system with MLD model we use 
auxiliary variable where z(k) is an auxiliary continuous 
variable representingv and ϑ in  different operating modes. 

 Moreover, the transformation of the hybrid system 
equations into the MLD form requires the application of a set 
of given rules. A higher level language and associated 
compiler HYSDEL [14] (see the Appendix) are used here to 
avoid the tedious procedure of deriving the MLD form by 
hand. Given the MLD model, the scenarios are simulated 
using the Hybrid Toolbox for Matlab [15] Matrices Ei1, . . . ,5 

are defined by the MLD transformation procedure.  
In order to show the capability of handling a hybrid control 
problem, we have simulated the system motorboat.  The 
results of the predictive control described by equation (4) are 
shown in Figure 3. 
 

      With N (horizon of prediction) =3 and Ts was equal 
to the sampling period 0.2.  

The discrete inputs of the motorboat example can be 
represented as shown in Figure 4. The aim of the control is to 
drive the motorboat as fast as possible according to the path 
defined.   

 
We Remarque the both states of motorboat succeed to 

reach reference imposed by the user.  
 
The switching inputs required to keep track of the 

reference, the states of the system remain close to the 
reference, and this objective is reached by a switching 

k1 k2 k3,  , u u u Figure 4 
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                 Fig 3. The states of motorboat system 
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Fig 4. The inputs of motorboat system 
 
We consider a actuator fault affecting the speed of the 

motorboat (bias). This is maintained throughout the 
operation of the system 

. 
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Fig 5.  The states of normal and faulty mode 
 
        We present in the figure 5 p the states of the normal 

and faulty mode fault tolerant MPC control. Despite the 
failure, we note that state succeed to reach the trajectory 
ϑ (the yaw angle) imposed by the user.  

Also we note the system tolerant ensures the continuation 
of desired trajectory after some delay compared to normal 
mode but with different speed. 
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In fact, if the fault is affected, the passive fault tolerant 

control technique consists to reconfigure the model 
predictive controller for the faulty system by changing the 
constraints to reflect the identified fault. Therefore, the MPC 
controller updates this constraint.  

 

V. CONCLUSION 

     In this paper, we have developed and discussed a 
methodology of passive fault tolerant control based on 
Mixed Logical and Dynamical (MLD) approach as model of 
the hybrid systems and Model Predictive Control (MPC) for 
control strategy. The approach is applied to motorboat 
system. The obtained results are very interesting and prove 
the efficiently of the fault tolerant MPC control. 

 

Appendix 
Hysdel code  

[um=1] ↔ [um=1] 
[uk1=1] ↔ [uk=-10] 
[uk2=1] ↔ [uk=0] 
[uk3=1] ↔ [uk=10] 
 
SYSTEM BATEAU{ 
INTERFACE { 
  STATE { 
  REAL v [0,2]; 
  REAL th [-10,10]; 
} 
INPUT { 
   BOOL um,uk1,uk2,uk3; 
} 
PARAMETER { 
   REAL v1= 0.1813; 
   REAL v2=0.8187; 
} 
} 
IMPLEMENTATION { 
  AUX { 
    REAL vp; 
    REAL thp1,thp2,thp3;} 
  DA { 
     Z1={IF um THEN v2*v+v1 ELSE v2*v}; 
     Z2={IF uk1 THEN th-0.3*v}; 
     Z3={IF uk2 THEN th+0*v}; 
     Z4={IF uk3 THEN th+0.3*v};} 
 
CONTINUOUS { 
    v=Z1; 
    th=Z2+Z3+Z4;} 
MUST { 
 
(uk1&~uk2&~uk3)|(~uk1&uk2&~uk3)| 
(~uk1&~uk2&uk3);} 
}}                      
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